
Repeated-Game Modeling of Multicast Overlays
Mike Afergan

MIT CSAIL
Email: afergan@alum.mit.edu

Rahul Sami †
School of Information

University of Michigan, Ann Arbor
Email: rsami@umich.edu

ABSTRACT

Abstract— This paper studies multicast application overlay
networks in a repeated-game framework. In these overlays, users
have both the motivation and the means to alter their position
in the overlay tree. We introduce a repeated-game model of
user behavior that captures the practical tradeoff between a
user’s short-term desire for quality and long-term desire for
the network’s continued existence. We simulate overlay tree-
formation protocols with this model to study their robustness
to selfish users. We show that this model can explain user
cooperation and provide insight into how overlay systems scale
in the absence of heavyweight mechanisms or identity systems.
We also use the model to derive practical guidance on how to
make multicast overlay protocols more robust to selfish users.

I. INTRODUCTION

Many applications, such as live streaming video or stock
tickers, require efficient distribution of real-time data. IP
multicast is a router-based solution designed to provide a
scalable infrastructure for such applications. By contrast, in an
application-layer multicast overlay network, end-user nodes
use IP unicast to create a virtual multicast tree. Such overlays
have been examined extensively in the literature and are now
beginning to be deployed. Application overlays can approx-
imate many of the same design goals of IP multicast, in
particular sizeable gains in network efficiency. Further, they
are easier to deploy than IP multicast. Application overlays
typically have a much smaller scale and further, ISPs do not
need to be involved in the deployment, thereby eliminating
many complex cost and pricing issues.

However, because these overlay networks rely on end-user
systems, they encounter the issue of user incentives just like
other peer-to-peer applications. Nodes deeper in the tree may
suffer from increased latency, jitter, or loss. Further, nodes
supporting many children may suffer from increased band-
width or CPU utilization. This may cause nodes to attempt
to place themselves higher in the tree or to support fewer
children. Even this simple selfish behavior can wreak havoc
on the system and its efficiency.

One approach to these incentive issues is to design mech-
anisms to directly detect or prevent cheating. Proposed tools
here include identities, monitoring systems, micro-payments,
and reputation schemes. Indeed, a study of the system using

Portions of this work were reported in an author’s PhD thesis [1].
†Author supported in part by NSF grant ITR-0219018. Most of this work was
done at the MIT Computer Science and Artificial Intelligence Laboratory.

standard one-shot game theory suggests that we cannot en-
gender user cooperation without either financial incentives or
tight monitoring. However, it is often impossible to implement
either payment schemes or tight controls; even if possible,
they likely require a heavy infrastructure investment. Further,
systems (e.g., [5]) without this additional infrastructure often
perform reasonably well in practice!

In this paper, we demonstrate that this apparent paradox can
be explained by the key observation that even selfish users
want the system to exist in the future. We use the tools of
repeated game theory to develop a model of user behavior
that captures this positive aspect of user incentives. In our
model, a user’s benefit depends on her position in the overlay
tree. A strategic user evaluates each potential action based on
its total expected benefit: the sum of her immediate benefit
and a (discounted) future benefit over the expected lifetime
of the system. An action to deviate from the protocol might
improve her immediate benefit, but have the side-effect of
degrading the system performance and hence shortening its
expected lifespan. Thus, she will deviate from the protocol
only if the immediate gains from cheating exceed the future
expected loss.

In contrast to most earlier work on mechanism design for
networks, we assume a minimal infrastructure. We explic-
itly assume that there is no central trusted entity, nor any
form of a payment system. Further, we do not attempt to
devise an effective monitoring, identity, or reputation system.
These assumptions reflect the reality of the current Internet.
Further, even if such machinery could exist, it would likely
come at a significant (monetary or performance) cost. It is
therefore important to consider alternative design approaches
when possible. With this model, we study the performance
of overlay multicast formation protocols in the face of selfish
user behavior. We aim to evaluate the protocol performance,
and to identify protocol parameters or features that improve
robustness to selfish users.

Another key difference of our model is that the repeated-
game analysis makes the motivation for cooperation endoge-
nous to the model. Whether a user deviates from the protocol
is determined by her current and future payoffs, and is
thus directly dependent on the system design. In contrast,
earlier explanations of cooperation in overlay networks assume
that users have an exogenous fixed type that determines
their propensity to cheat. For example, users are modeled
as cheaters or non-cheaters [17], or assigned an altruism
parameter [11] [8]. Real user behavior is probably influenced

by exogenous type differences as well as other factors such
as bounded rationality. An ideal model would include all
these factors. However, we believe that an endogenous model
of cooperation is useful for two reasons. (1) It has fewer
degrees of freedom than models requiring a distribution of
altruism types; this makes it easier to make sharp, testable
predictions. For example, our model naturally predicts that, as
the number of users grows, the fraction of users who deviate
will tend to increase. Such a trend was earlier observed in
various systems by Huang et al. [12]. (2) Even if real user
behavior involves both a system-independent altruism type and
a system-dependent endogenous incentive to cooperate, the
latter aspect is likely to be more useful to system designers.

We believe these two differences are significant and use our
model to derive novel practical insight into multicast overlay
formation techniques. Because our model explains a user’s
willingness to cheat based on her location in the tree, we can
compare the robustness of different topologies and tree forma-
tion techniques. In simulation, we compare the tree-formation
protocol NICE [2] to a naive tree-formation algorithm that
maximizes the network efficiency. The results suggest that
NICE is more robust to selfish users, and can actually lead
to greater efficiency under fairly general conditions. We then
consider the impact of a basic NICE parameter, the cluster
size. We find that, under reasonable conditions, increasing the
cluster size can create more robust, and thus potentially more
efficient, trees.

We believe that our assumptions and style of analysis may
be applicable to a variety of problems, including other peer-
to-peer applications, traditional wireless networks, as well as
ad-hoc networking problems.

The rest of the paper is structured as follows. In Section II,
we present some background information on overlay trees,
focusing on the NICE protocol. In Section III, we explain
and motivate the problem. In Section IV, we examine several
natural candidate solutions, and argue that they are not useful
in this setting. Given this motivation, we present our model
in Section V and our simulation methodology in Section VI.
In Section VII we present our core results. Because we use
a simple and specific model in our main analysis, we then
consider a wide range of relaxing assumptions in Section VIII,
and see that our qualitative results are insensitive to these
assumptions. We summarize our conclusions in Section IX.

II. NICE AND MULTICAST TREE FORMATION PROTOCOLS

The purpose of a tree formation protocol is to connect the
user-nodes to the source in an overlay tree that is efficient in
multiple dimensions. Desirable properties include scalability,
low communication overhead, and fast convergence in the face
of nodes churn. Traditional performance metrics include stress,
the maximum load induced on any router in the network; and
stretch or relative-delay-penalty (RDP), the ratio of the latency
of receiving a packet through the overlay versus directly from
the source. Due to differing approaches, requirements, and
tradeoffs between these metrics, there are a variety of proposed
protocols for this particular overlay problem.

A

B

C F

Cluster−leaders of

Layer 0

Layer 1

C

L

Cluster−leaders of
layer 1 form layer 2

layer 0 form layer 1

Topological clusters
Layer 2 F

joined to layer 0
All hosts are

E F

G
H

J

K

M

M

D

Fig. 1. A three-dimensional depiction of the NICE protocol. Leaders from
the lower layers become the members of the higher layers. (Figure taken from
[2])

For most of this paper, our analysis focuses on a particular
protocol, NICE, which we select for several reasons. For the
single-source application we consider, so called tree-first pro-
tocols which create singly rooted trees are most appropriate.
NICE is a tree-first protocol which specifies several constraints
on the tree (discussed below). Those tree-first protocols that
do not specify constraints easily permit strategic manipulation.
(For example, if a node can select its number of children,
as in [5], it can easily select 0.) Finally, relative to other
multicast-overlay protocols, NICE has been shown to have
good performance across a variety of metrics [2] including
communication overhead. While some of these metrics are
orthogonal to our study, it makes NICE a good candidate for
exploration.

NICE structures the user-nodes into a hierarchical tree of
clusters. Roughly, each cluster contains nodes that are close to
each other, according to some cost metric. These nodes in turn
select the centroid of the cluster to be their leader. Clusters
are arranged in a hierarchy of layers, such that the members
of a cluster at layer � are leaders of clusters at layer �− 1, as
depicted in Figure 1. As such, all nodes belong to a layer 0
cluster.

Tree maintenance is a completely distributed process. To
join, a node descends through the tree, selecting the closest
node in a given cluster and then querying it for its children.
To balance the tradeoff between stretch and stress, the tree
maintains a cluster size parameter, k. If a cluster becomes
smaller than k, it merges with a nearby cluster that shares a
common parent. Similarly, if a cluster becomes larger than
3k, the cluster is split, and the two new cluster leaders
become children of the old cluster leader’s parent. The cluster
leaders also periodically attempt to improve the tree, either by
transferring leadership to a new centroid or by finding a better
parent.

Further details and results on NICE can be found in [2].

III. THE PROBLEM

A crucial problem with many tree-formation protocols is
that they assume that users will be faithful to the protocol.
Unfortunately, users have both the motive and the means to
alter their location in the tree. The location in the tree can
significantly impact the stream quality and the load on a
node. Further, in all of these protocols, there are a number
of ways to lie and thus alter one’s position in the tree. In
this section we discuss these motives and means; and examine

3

some alternative approaches to the problem. Throughout this
discussion, we refer to this tree-altering behavior as cheating.

A. Why Nodes Want to Cheat

The utility of an end-user is a function of 1) the content
(data, streaming video, etc) obtained from the tree; and 2) the
responsibilities incurred from participating in the tree. These
are in turn defined by the user’s location in the tree and the tree
structure. Consequently, the tree structure is very important.

For a large class of applications, a node’s proximity to the
root significantly impacts the user utility. In any networked
application, processing by intermediate nodes creates the po-
tential for decreased quality, such as increased latency, loss,
or jitter. This is especially relevant in the case of overlay
networks where the intermediate nodes are assumed to be end-
user machines, with potentially limited resources.

Another practical consideration is that supporting children
has a negative impact on a user’s utility. Each additional child
supported requires overhead state and resources. While this
overhead need not scale linearly with the number of children,
its impact can be non-trivial. This can be problematic for
several reasons: 1) the user may also care about other tasks
also running at that time, 2) the underlying application using
the overlay may itself be resource intensive (e.g., streaming),
and 3) the hardware and operating system of the machine
is likely not optimized for it to function as a server. These
concerns are validated in practice, for example, in that many
peer-to-peer applications allow users to disable serving as a
parent node [5] [15].

The result of these two considerations is significant. In the
absence of any enforcement mechanism or concern for the
future, these two factors can transform efficient overlay trees
into degenerate, unicast trees.

B. How Nodes Can Cheat in NICE

Given the incentive to cheat, it is important to understand
how readily a node could eliminate children and/or move
higher in the tree. Unfortunately, there are a variety of ways
to do one and/or both in most protocols. In some protocols,
such as those where the user selects the number of children
she wishes to support (e.g., the CMU system [5]) this is trivial.
In others, such as NICE, the process is more subtle but still
quite easy.

For example, to move higher up the tree:1

• A node desiring to be part of a layer � cluster can just
claim to be the leader of a layer � − 1 cluster, even if
such a cluster did not exist.

• A node can manipulate the heartbeat messages so as to
become leader of a given cluster, and then continue to
manipulate while refusing to relinquish leadership. This
could be repeated multiple times to move up the tree.
(This is discussed in further detail in [17].)

To support fewer children:

1These cheating strategies are not designed to be optimal or the easiest, but
rather simple and likely effective. In Section IV we discuss how such strategies
may be stopped – but also how some cheats cannot be readily prevented.

• A node can simply refuse to serve its children, or
partially-serve them (e.g.,transmit a fraction of the pack-
ets).

• A node can delay or drop probes from new children
• When joining the tree, a node can select a cluster where

performance is marginally worse but where it is very
unlikely to become the leader.

The existence of these tricks should not be viewed as a flaw
of NICE. It is designed to operate with faithful users and thus
has no protection whatsoever from any of these cheats. Further,
some of these cheats (such as some of the RTT manipulations)
can potentially be addressed.

However, some manipulation techniques seem to be very
difficult, if not impossible, to address. One particularly potent
technique is a Sybil attack. Sybil attacks involve the creation
of multiple identities to benefit the true user. Sybil attacks
are particularly potent and particularly difficult to prevent.
Amongst other significant practical obstacles for detecting
Sybil attacks is the prevalence of Network Address Translators
(NATs) – which cause many legitimate users to share the same
IP address.

A Sybil attack can easily manipulate a NICE tree. For
example, in the case of NICE, a user could simply claim that
she is a layer � − 1 leader and thus should join a layer �
cluster. One simple defense would be to require the user to
present the IP addresses of the user’s children and descendants.
However, a Sybil attack here would allow the user to create
fake descendants and thwart that defense.

There are several possible, but ultimately incomplete, de-
fenses to Sybil attacks. One simple approach to a Sybil
attack is computational puzzles; for example, each parent
could require each child to solve one puzzle per descendant.
However, in this application, this is unlikely to be an effective
solution. The puzzle is forced to be mild because the system
must support a wide range of end-user machines, and just
a few fake children might be sufficient for a node to cheat.
Other approaches that are discussed in the next section include
identities and payment schemes.

IV. WHY THIS PROBLEM IS HARD

This ability of a node to manipulate the tree formation
protocol to its advantage is not unique to NICE. Rather, it
is a general problem for multicast overlays that is difficult to
solve without additional machinery. Here, we consider several
reasonable proposals for addressing this problem and discuss
the weaknesses of these solutions. For some approaches, a
more in-depth discussion is warranted, but beyond the scope
of this paper; here, we highlight the most salient points.

In considering the merits of each approach, we make two
key assumptions. First, we assume that only a simple and
lightweight solution is appropriate for this application. Clearly
the problem of content dissemination could be solved with a
variety of architectures.2 Given that an end-user overlay is

2One approach is to avoid any incentive problem by using a Content
Delivery Network. Here the source pays the CDN, who in turn provides and
controls all the server nodes.

4

being used, we presume that the content and the application
are such that a simpler and more light-weight approach is most
appropriate. The second assumption is that Sybil attacks from
a given IP address can not be detected through direct means
(e.g., examining the packets) nor directly prevented (e.g.,
computational puzzles). In light of these two assumptions, we
believe that while each of the following approaches has merit,
none satisfactorily addresses this problem.

• Identities A direct approach to stopping Sybil attacks is
through the use of identities. The identities could be tied
to a form of identification difficult to forge (e.g., in-
person presentation of a passport), or could simply be
costly to obtain. No wide-scale system exists today, but
even if such infrastructure were supported by a third-
party, it would have to be integrated into the overlay
which involves overhead, complexity, and implementation
cost. Further, identities may be inappropriate for the
application due to privacy concerns or simply the hassle
relative to the value of the content.

• Micro-Payments The most direct approach to the incen-
tive problem is to introduce payments into the system.
Proposals for such systems include leveraging the VCG
mechanism [20] or taxation schemes [10]. Any payment
system would need some additional infrastructure, and
would probably require an identity system as well.

• Bilateral Monitoring and Agreements Bilateral monitor-
ing and rewards have been proposed in other peer-to-
peer contexts such as peer-storage [6] and file-sharing
networks [3]. However, multicast differs from these ap-
plications in that the flow of content is unidirectional–
the parent never receives any content from the child.
Therefore, this approach is not directly applicable. It is
conceivable that bilateral exchange could be implemented
by, say, using concurrent trees with the source alternating
packets among the trees. However, in the absence of
strong identities, it is also vulnerable to the Sybil attack.

• Monitoring Direct monitoring of nodes and their behav-
iors is an attractive, but difficult proposition. First note
that in general there is no way for one node on the Internet
to monitor the actions of another. However, one could
imagine a system in which the source or indeed every
node in the tree performed a series of tests on other
nodes. For example, a monitoring node could pose as
a new node to understand the tree topology, or could
periodically require each node to provide information or
pass a series of tests. Many of these approaches could
prove hard, complex, and/or costly, and moreover they
ultimately can be thwarted with Sybil attacks.

• Reputations Reputation schemes combine aspects of
monitoring and identities. Many reputation and trust-
inference systems have been proposed for peer-to-peer
systems (e.g., [13]) and even multicast-overlay networks
[14]. These systems are challenged in at least two ways.
First, they introduce additional overhead and complexity
to the system. Second, there is a significant tradeoff be-

tween efficiency and robustness when using the reputation
information.
For example, consider a large number of legitimate users
in a single sub-network. The efficient solution is likely
form them in a subtree that connects to the tree near the
source. In this topology, they will minimally interact with
the rest of the system, and thus not earn a high reputation.
If they are punished, this is clearly sub-optimal. However,
if they are allowed to form such a tree, then the algorithm
is vulnerable to a Sybil attack.

• Intricate Tree Structures One way to counter the Sybil
attack is to build trees that directly minimize the benefits
of cheating. For example, the protocol could build trees
randomly or ensure that multiple entities at a single IP
address are never together in a subtree. These approaches
face the same challenge as reputation schemes: such a
scheme may mitigate cheating, but at a potentially heavy
cost in terms of efficiency.

V. A REPEATED GAME MODEL

The negative results of the prior section are troubling for
several reasons. They suggest that application overlays are not
feasible in practice. Further, they do not explain the fact that,
on a limited scale, such applications do exist on the Internet.
A more complete model for this problem must explain this
phenomenon of cooperation, and should ideally do so in a
way that aids system designers to engender such desirable
cooperation among users.

Our core observation is that even selfish users want the
system to exist in the future. If multicast is being used, we
assume it is to some degree required, or beneficial to the
community using it. Reasons for this include a source trying
to avoid a large bandwidth bill, or an end-user trying to
avoid being shut down by an ISP or IT organization while
broadcasting to a large group. In these cases, no user need
care about the state of the network per se. However, all users
want the overlay to continue to exist and thus indirectly care
about the network’s health. In this section, we show that this
dynamic is well captured by a repeated game model.

A. The notion of repeated games

We begin with a brief overview of the concept of a repeated
game. For a more thorough summary, consult [16] or [9].

A repeated game is the repeated play of a particular stage
game. Here, we consider the Prisoners’ Dilemma, a canonical
example which maps nicely to our problem. Two players
simultaneously choose to either cooperate (C) or defect (D),
with stage-game payoffs given by Table I as ordered tuples.

TABLE I

GAME PAYOFFS FOR THE PRISONERS’ DILEMMA. PLAYER 1’S MOVES ARE

THE ROWS, PLAYER 2’S MOVES ARE THE COLUMNS.

C D
C (1,1) (-1,2)
D (2,-1) (0,0)

5

In the one-shot stage game, both players will play D.
Regardless of what the other does, it is always in the best
interest for a particular player to defect. The only Nash
Equilibrium (NE) of this game is therefore (D, D). Strikingly,
if the players had both played C, both players would have
been better off.

Now consider the case where the game is played repeatedly.
If the players play a fixed number of rounds (known to both
players), then the unique equilibrium is still (D,D). However,
when the number of rounds is infinite or unknown, other
equilibrium outcomes are possible.

For example, consider the following strategy for each
player:

1) Play C
2) If the other player ever plays D, then play D forever.

If the game is infinite and players do not discount future
periods, then repeatedly playing (C,C) is as an equilibrium
outcome. Here, the threat of punishment causes the selfish
players to not defect. This class of repeated equilibria results,
referred to as the Folk Theorem, can occur even when the
game is finite and/or players are impatient.

We can formally analyze this class of equilibria by defining
the user’s decision making process. The standard approach in
repeated game theory is to model the user as attempting to
maximize the discounted sum of all rounds’ payoffs. Thus, if
p
(k)
i represents player i’s payoff in the kth round, player i’s

total payoff Pi is given by

Pi =
∞∑

k=1

δk−1p
(k)
i

Here, the parameter δ satisfies 0 ≤ δ ≤ 1; values of δ strictly
less than 1 can be used to capture the probability of the game
ending after each round, a real or psychological discounting
that player i applies to future payoffs, or some combination
of these effects. In this case, the players will cooperate only
if δ is sufficiently large relative to the parameters of the game
and the particular strategy being played. This model explains
the emergence of cooperation among the players in this game
and permits analysis of the relationship between the game,
strategies, and outcomes.

B. Repeated-game modeling of overlays

We now turn to repeated-game modeling of the multicast
overlay systems. Note that a user’s options of following the
protocol or cheating map to the “cooperate” and “defect”
strategies of the prisoner’s dilemma, although there are multi-
ple possible cheating strategies. A user’s payoff at each step is
determined by her position in the multicast tree. The payoffs
are represented by her utility function. As discussed, it is
natural to assume that a user’s utility decreases with increasing
depth or increasing number of children to be served.

In our model, we assume that the original need for the multi-
cast network, and thus the indirect motivation for cooperation,
is network load. We define network load as the total number of
unique packet-hops to deliver all the traffic, which is analogous

to average stress. If the load is too high, or close enough to the
unicast load, the future existence of the network is in jeopardy.
There are several potential reasons for this phenomenon. An
ISP or IT department might shut the overlay down if there
is too much traffic; the source might stop using an inefficient
network; or, the community might abandon the system for a
competing system.3

The second key aspect of the system is that the performance
of the entire overlay network affects this likelihood of it
ceasing to exist. We model this by postulating a (e.g., ISP)
Response Function. This function determines, for a given value
of the network load, the probability that the system will be shut
down after the current round.

For this feedback to work, the nodes require some signal of
the load, and also some knowledge of the response function.
In practice, users can obtain a reasonable indication of the
network’s state from the source, or from traversing the net-
work itself. Similarly, the (non-strategic) source could provide
information on the response function. This could be a data-
feed or a more crude method, such an email to users regarding
the pressure the source is getting from its ISP. Finally, we note
that in practice, the users do not even need a noisy signal of
the entire response function, but only the local derivative. For
simplicity, in our model, we assume that the users have perfect
information as to the state of the network and the direct impact
of their actions. (We will relax these assumptions in Section
VIII.) In our model, users do not consider the impact of their
actions on other users’ willingness to cheat. (We discuss this
assumption more formally in Section VI-I.)

Combining these key components, our model can explain
cooperation in overlay networks without relaxing the standard
model of an individual as a rational (selfish) utility-maximizer.
This idea is deeply rooted in the game theory literature.
However it contrasts starkly with the Computer Science lit-
erature on this class of problems that uses exogenous types.
For example, Mathy et al[17] models cheating in multicast
overlay trees by randomly assigning a given percentage of
users to be cheaters. These cheating nodes always cheat and
the other nodes are not selfish and always faithful. Similarly,
Feldman et al look at the related problem of cooperation in the
context of peer-to-peer file sharing. They develop threshold
[8] and randomized (mixed) [7] strategies which produce a
cooperative equilibrium. While the notion of repetition is
implicit in their models, the relevant parameters (the threshold
or mixing proportion) is again a type exogenous to the model.
By contrast, in our model, the motivation for cooperation is
endogenous. All users are selfish, yet their desire to cheat is
tempered by their concern for the network and informed by
their current and potential future payoffs. This in turn is a
function of the overlay network topology, facilitating analysis
of protocol decisions.

3In addition to network load, alternative motivations could and likely do
exist. These could include concerns about source load or about degradation
of quality in the face of fixed capacity and other resources. We believe that
these models can be shown to be functionally equivalent. However, we omit
such a discussion due to the space constraints, and for clarity.

6

We believe that a complete model of user behavior likely
includes such generosity (captured in altruism types) and non-
zero action costs (captured in epsilon-equilibria [4]). Here,
we focus on the repeated game, which we feel is a simpler
explanation and a more useful tool. The repeated game cleanly
explains why these networks work well for few users but do
not necessarily scale without additional mechanisms. Further,
by making the incentive to cooperate endogenous, it facilitates
system analysis and architecture comparison.

C. Formalizing the Repeated Model

Based on these assumptions, we can now model the entire
game. We group the definitions and discussions based on
what they impact the most. We then present the equilibrium
equations.

1) Instance Definition: An instance of the game is defined
as follows:

• A network, G = (V,E), V and E are finite.
• A set of nodes N to be served, N ⊂ V
• A single source, s /∈ N , s ∈ V which sends a stream of

data to all nodes directly connected to it. The source has
infinite capacity and constant utility.

• A single, atomic, piece of content to be sent from the
source to the end-users.

2) Tree Related Definitions: Given a problem, we have an
algorithm, A, which constructs an overlay topology, T .

Definition 1: The load of a given link, � for a topology T
and network graph G is denoted as L(�, T,G). The load of
an overlay topology, denoted L(T,G) or L(T), is defined as
the sum of the edge links:

L(T,G) =
∑

�∈E

L(�, T,G)

Definition 2: A valid tree is one that satisfies the following
properties:

1) All N nodes are connected by T = A(G); and
2) All nodes satisfy the individual rationality constraint,

that is, ui(di, ci) ≥ 0 ∀i.
We now define the ISP response function, which represents

the probability that the game will end in a given period. In
our analysis we examine particular response functions, but in
general, we could use any response function R that satisfies
certain properties. We formalize this by defining Tmax to be
the unicast tree. That is, Tmax = {(s, i)∀i ∈ N}. TF is defined
to be the faithfully constructed multicast overlay tree, adjusted
by connecting nodes who are further from their parent than
the root to the root. Let LF = L(TF) and Lmax = L(Tmax).

1) R(LF) = 1.0
2) R(Lmax) < 1.0 and R(Lmax) ≥ 0
3) dR(L)

dL ≥ 0 for LF ≤ L ≤ Lmax

The first requirement says that the network will exist if
users are faithful. 4 The second says the unicast network will
continue to exist with some probability strictly less than 1.0.
And the third adds that for valid L, R(L) increases with L.

4We could allow for R(LF) < 1.0, but choose not to for clarity.

3) User Model: Given an overlay tree, T , we have:
• di(T) denotes the depth of node i in tree T , and ci(T)

denotes the number of children that i supports in T .
• ui(T) = ui(di(T), ci(T)). u(.) is strictly decreasing in

both di and ci.
As discussed in Section V, users have knowledge of L(T) and
R(.), but not T nor the history of plays that produced T .

4) User Decision: At any point in time, a user may accept
the faithful position in the tree (d, c) with associated load
L, or cheat and obtain some alternative (d′, c′) with load
L′. By construction we have d′ < d and/or c′ < c. We
have u(d′, c′) ≥ u(d, c) but such a deviation will produce
a new load L′ > L. As discussed above, while we later relax
these assumptions in simulation, we assume that all users have
perfect knowledge of R(.), L, and L′ − L. We also assume
that in practice they can observe δ and c.

If a user accepts a (d, c) (other than (1, 0)), decreasing the
chances of the network’s future existence must outweigh the
benefits of changing the position in the tree. We model this
formally below. In doing so, we assume that users have a
limited understanding of the impact their actions on other
users. In particular, each user moves as if her move will
be the last. In practice, when one user cheats, this may
precipitate more cheating by others. Reasoning about this
process is however not simple for a user, especially given
the subtleties of protocols such as NICE. Therefore, our
model assumes limited rationality – users have no ability to
reason about this impact and do not consider it. The effect
of this is that users are more likely to cheat – making our
results of cooperation conservative. We call this assumption
the Restructuring Assumption and formally state it in Section
VI-I.

Taking these factors, we have that for a user i not to cheat,
the following must hold:

∞∑

t=0

δt[R(L)]tui(d, c) ≥ ui(d′, c′) +
∞∑

t=1

δt[R(L′)]tui(d′, c′)

(1)
The left-hand term represents the discounted payoffs to

cooperating. The first right-hand term represents the one-stage
payoff to cheating and the last term represents the continuation
payoff from that cheat.

We simplify:

ui(d, c)
1 − δR(L)

≥ ui(d′, c′)+δR(L′)ui(d′, c′)∗ 1
1 − δR(L′)

(2)

And now put the equation in standard repeated game form:

ui(d, c) ≥ (1−δR(L))ui(d′, c′)+δR(L′)ui(d′, c′)∗ 1 − δR(L)
1 − δR(L′)

(3)
Quick informal analysis of Eqn(3) provides intuition on the

impact of the various parameters have on a user’s desire to
cheat. Informally:

• Patience of Users As δ → 0, the right hand side goes to
ui(d′, c′). Since ui(d′, c′) > ui(d, c), we see that users
become more likely to cheat.

7

• Benefit to Cheating The benefit to cheating is (u(d′, c′)−
u(d, c)). As this increases, the right-hand side becomes
large relative to the left, meaning that users are more
likely to cheat.

• Cost to Cheating By contrast, as the cost of cheating
R(L′) − R(L) becomes large, the final term becomes
small, making users less likely to cheat.

VI. THE SIMULATOR METHODOLOGY

This problem of multicast overlays is complex with many
variable attributes including the number of players, utility
functions, overlay tree topology, and underlying network
topology. As a result of this complexity, it is not possible
to theoretically analyze the behavior of the entire system.
Therefore, we use simulation to better understand the system
dynamics and to gain intuition for design.

In this section, we describe a simulator designed to capture
and vary these parameters. First, we overview the simulator.
We then discuss several key assumptions implicit and explicit
in the simulator design.

A. Overview

The goal of the simulator is to model the decisions, actions,
and interactions of self-interested user-nodes who are part of
a single overlay topology.

1) The simulator takes a set of inputs:

• A synthetic network topology.
• A user utility function (u(d, c))
• A number of nodes (N)
• A discount factor (δ)
• A tree formation algorithm

2) The simulator randomly selects a source and N end-
user nodes in the topology, and constructs the overlay
tree using the specified algorithm.

3) Each node learns its depth and number of children and
receives a signal of the efficiency of the overlay system.

4) The simulator considers each node in the topology and
allows it to take action. The permissible actions are: 1)
connect to root and 2) drop child.

5) Step 4 is repeated until no node wishes to act.
6) Statistics are collected and reported.

B. Implementation of NICE

When the tree formation algorithm used is NICE, the simu-
lator uses a custom-built implementation of the NICE protocol.
The NICE modules takes as input a network topology, a
set of N nodes, a source, and a cluster size parameter (k).
The simulator then builds the NICE tree, bottom up, using
a distance metric of hop count, which corresponds to our
definition of load (as discussed in Section V-B). As nodes
enter and leave the tree, the NICE module performs the
appropriate cluster joins and splits as specified by the protocol.
Furthermore, to simulate the limit of the constant refinement
process, upon any change to the tree, the tree is rebuilt from
the bottom (layer 0) of each rooted subtree.

One necessary modification of the NICE protocol is that
we allow for multiple top-layer nodes in steady-state. This is
done for multiple reasons. In order that no node has negative
utility, the depth of the tree and the number of children of any
node must be bounded. Yet, the tree protocol must always
allow for additional children of the source as the number
of nodes increases. Furthermore, if the NICE protocol did
not allow for this, a pathological behavior could result where
nodes kept increasing their claimed layer (though fabricated
nodes) to claim leadership of the top level, thereby creating
an instability in the tree. Finally, note that multiple source
children are allowed in the standard NICE protocol in cases
such as partitioned networks. Therefore, it is possible to for
cheating nodes to produce such a topology if they need to.

C. Implementation of Cheating

The simulator allows for two potential cheating actions:
connecting to the source and dropping a child. As discussed,
there are a variety of ways to cheat and a variety of partial
defenses that could be used. Our simulator’s implementation
of the cheats is designed to be simple but representative.

Nodes are free to connect directly to the source whenever
they want. When a nodes does so, it maintains the structure
beneath itself. As such, this essentially creates another NICE
tree rooted at the same source. This tree continues to follow
the NICE protocol.

Dropping a child is a slightly more subtle operation due to
the complexity in reconfiguring a tree. While there are multiple
subtle ways to drop a child, the simplest is to simply stop
sending the child any data. In NICE, the orphaned node would
attempt to perform a new leader election within its cluster and
connect to the higher layer. However, this higher layer could
also thwart the orphan. While it is conceivable that we could
detect when the leader at the higher layer would also reject
it, this procedure of determining the exact reconnection point
can be quite complex. Therefore, for simplicity, when a child
is orphaned, the simulator reconnects it directly to the source.
Further, after dropping a child, the parent creates an artificial
child to avoid receiving a new child. Given this behavior, a
parent when considering whether or not to drop a child, first
considers the child who would generate the least amount of
additional load at the source. This maximizes the expected
system lifetime, and hence, the future payoff of the parent.

D. Randomization

For a given experiment (which defines N , δ, and u(.)), each
run is defined by a network topology, a source node, and a
set of user nodes. The data presented varies the inputs in two
dimensions:

• Network Topology: As discussed in Section VI-G, we
use three different network topologies. Each is randomly
generated by BRITE, with the same parameters.

• Random Seed: Each run is defined by a random seed.
The seed determines the source and the users from the
network topology. It also defines the order via which the
simulator will iterate through the users.

8

Unless otherwise noted, each experiment uses 30 random seeds
and 3 topologies for 90 runs per data point. To facilitate
comparison, we use the same topologies and seeds across all
of our experiments.

Most graphs present only the mean value over the trials.
However, the individual trials of all graphs are qualitatively
similar. Therefore, we feel that the mean is a sufficient metric,
unless otherwise noted.

E. Utility Function

The assumptions about QoS and the incentive for cheating
is embodied in the utility function. We use utility functions of
the following form:

u(d, c) = γ − λ
√

d − βc

where γ, λ, and β are all parameters configurable in the
simulator. The selection of the square root function for the
depth is designed to capture the decreasing marginal disutility
of increasing depth. The linear function over the number
of children is based on the fact that some of the costs of
supporting children (e.g., CPU, bandwidth) scale linearly with
load. Finally, we have the constant γ term to capture the fact
that while depth and children do matter, another important
component of the utility function is simply obtaining the
content. Unless otherwise noted, the simulations in this paper
use γ = 10, λ = 1.0, and β = 0.25; in Section VIII-A, we
discuss a range of alternate utility functions.

F. Response Function

The response function of the ISP plays an important role in
the behavior of the system. The simulator does not model the
actions of the ISP per se, but rather uses the response function
when evaluating the utility of different actions. Unless other-
wise noted, the simulator uses the following linear response
function:

R(T) =
L(UNI) − L(T)
L(UNI) − L(F)

where L(.) is the load operator, UNI is the unicast tree, and
F is the tree produced by faithful users.

Section VIII-B presents an analysis of a wider space of
response functions, demonstrating the relative insensitivity of
the conclusions to the choice of functions.

G. Network Topologies

To generate the underlying network topologies, the simula-
tor uses the Boston university Representative Internet Topol-
ogy gEnerator (BRITE) [18] . BRITE uses heavy-tailed models
to produce inter-AS and intra-AS models. In our simulations
we use the BRITE Barabasi model, a preferential attachment
model, for the inter-AS connectivity. For intra-AS (router)
connectivity, we use the BRITE Waxman model. All models
have 3000 nodes.

H. Alternative Design Decisions

The simulator, as presented, embodies a few key design
decisions and assumptions regarding the approach to finding
trees and user behavior within the trees. However, we feel that
the conclusions drawn are qualitatively similar to those which
would have been obtained from alternative sound assumptions.

One implicit decision of the simulator is to construct trees
instead of searching the space of potential trees. For many
formation protocols, various faithful trees could be constructed
depending on ordering. Once built, the ordering of the cheating
could also cause different stable topologies result. Therefore,
an alternative approach is to construct all possible topologies
and evaluate which are stable. This has two downsides in that it
is computationally difficult and also provides little justification
for why one topology may arise versus another.

Another key decision is whether or not actions, once taken,
are permanent. In practice, when a node cheats, for example,
inventing children to move up the tree, this cheat need not
be permanent. After some period of time, based on the
actions other nodes, the node could choose to become faithful.
However, such a strategy would likely be quite complicated
for a node to implement effectively. Instead, our model takes
the approach that cheating is a permanent decision, though (as
described above) after cheating the user may still choose to
faithfully implement NICE in her new subtree.

I. Proof of Equilibrium Results

For simplicity, the strategies used by the agents here do not
anticipate the reactions of other players. Therefore, there may
be additional, more efficient, equilibria which are possible. In
our analysis, we examine properties of the stable points of the
simulator – when no user wants to cheat. Under reasonable
assumptions, these stable points are equilibrium outcomes
even if players had a perfect ability to understand future
reactions.

While a formal proof follows, the intuition is relatively
simple. Consider an overlay topology T ∗ that is stable in the
simulator. That is, no player wishes to either root itself or drop
a child considering only that action in isolation. If T ∗ were
not an equilibrium outcome (given perfect foresight), then a
player must be able to make a beneficial move, considering
the reactions of the other players. Since the only difference
between these two cases is the other players’ reactions, this
requires a player i to be able to move in a way that precipitates
a move by another player, j, which is beneficial to i. We can
show that under reasonable assumptions, this is impossible.

In this paper we consider two tree formation protocols,
NICE, which has been already presented, and Naive Min Cost,
which we present in Section VII-B.1. One salient feature of
NICE is that while most changes to not affect the tree, some
changes, over time can produce intricate reorganizations. Thus,
in rare cases, it may be possible for a node to move which
causes the protocol to further rearrange the tree in a way
that benefits the node. We call such events beneficial induced
restructuring events. In practice, not only are such events
relatively rare (since it involves at least two cheating moves

9

leading to a positive outcome), it would also be very difficult
for a node to properly foresee such a move. Further, the move
will likely need to involve nodes not nearby in the tree as
simple moves (like disconnecting from the parent or having
a child leave) can be accomplished directly by the node. We
therefore feel the following assumption is very reasonable:
Restructuring Assumption: We assume that no node can
cause a beneficial induced restructuring event. That is, there is
no action for any player i that initially reduces her total payoff,
but induces the tree-formation protocol to restructure the tree,
which in turn induces some node j to cheat, and finally results
in a topology where the discounted payoff to i is greater than
in the original topology.

Again, this assumption is only needed for protocols like
NICE which attempt to re-balance the tree. For protocols
which produce a static tree or for architectures in which there
is no tree formation protocol, this assumption is not required.
We can now use the restructuring assumption to formalize the
preceding argument into the following theorem.

Definition 3: Let α be the strategy represented by the logic
of the simulator. That is, α prescribes that i moves from (d, c)
to (d′, c′) iff:

ui(d, c) ≥ (1−δR(L))ui(d′, c′)+δR(L′)ui(d′, c′)∗ 1 − δR(L)
1 − δR(L′)

Further, per the implementation of the simulator, α first
considers rooting itself and then considers child drops, in order
from the least rooting cost to the most.

Theorem 1: Let T ∗ represent a stable point for players
in the simulator (playing α). Assume that the restructuring
assumption holds. Then, starting from T ∗, always playing
“Stay” is a Subgame Perfect Equilibrium.

Proof: The action space available to each node is
{Drop Child j, Root Self, Stay}. Assume that the strategy
of all players always playing “Stay” is not a subgame-perfect
equilibrium. Then, there must be player i who can improve her
payoff by deviating from this strategy at some point in time.
Consider the first player i who can profit from a deviation; it
follows that i can profit from the deviation in the first round
after reaching topology T ∗, because “Stay” plays do not alter
the state of the game. Let us call the deviating action – which
must be “Root Self” or “Drop Child” – D

Let x be the total payoff to node i from playing “Stay”,
and let x′ be the total payoff to node i from playing D,
assuming that all other nodes continue to play “Stay”. But
this is exactly what the simulator examines and by definition
it already considered and rejected D. Thus, if T ∗ is stable in
the simulator, it must be the case that x ≥ x′.

Now let us consider the impact of playing D on other nodes.
Let x′′ be the payoff to i, taking into account the impact of
playing D on other nodes. Using the restructuring assumption,
this payoff cannot be greater than x– there are no indirect
benefits to i. Thus, we must have x ≥ x′′ – contradicting the
assumption that D was a profitable deviation.

VII. CORE RESULTS

In this section, we present the three core results from the
simulator and discuss their significance for system design. Our
three core results are:

1) System efficiency decreases with δ.
2) System efficiency decreases with N .
3) For the NICE protocol, under reasonable assumptions

system efficiency for sufficiently impatient users in-
creases with k, the cluster size.

The first two results are fundamental to the thesis of this
paper and validate our basic assumptions and model – that
concerns about future existence can mitigate cheating in the
absence of external enforcement mechanisms. This is in line
with standard repeated game results. The third result is novel
insight gained specifically from this problem. In short, we find
that the NICE protocol naturally exploits the tradeoff between
depth and number of children by assigning nodes at higher
levels more children. This means that with even mild amounts
of selfishness, NICE trees can outperform a centralized min-
cost spanning tree protocol. Further, since this tradeoff is
already an explicit parameter in the protocol (cluster size),
it can be adjusted in various ways.

To provide insight and intuition, the results presented in this
section consider a simple model. In particular, we consider the
basic utility function (from Section VI-E), no noise, and linear
reaction curve. In Section VIII, we relax these assumptions to
show that the main conclusions are robust to a wide range of
operating environments consistent with our base assumptions.

Many of the graphs in this section plot the impact of a
particular parameter on system efficiency. Efficiency in this
context is defined to be the fraction of the improvement
provided by the overlay that is realized in the face of selfish
users. Formally, we define it as:

Definition 4: The efficiency of a particular tree, T , is de-
fined as

L(U) − L(T)
L(U) − L(F)

where L(.) calculates the network load of a tree, U is the
unicast tree, and F is the overlay tree for the same network
and users, with all users being faithful.

A. Cooperation in Practice

As expected, system efficiency decreases with δ. This can
be seen simply in Figure 2, which examines a topology of 50
nodes.5 The steep slope as δ → 1.0 results from the 1

δ terms in
Equation (3). It is also useful to note that δ = 0 corresponds
to the negative result from the one-shot game presented in
Section IV.

Our second core result is that efficiency decreases with the
number of nodes. This is important to understand as it is
an important dimension to consider for scalability concerns.
Figure 3 builds on Figure 2 by adding N = 10 and N = 100.
Increasing N has two impacts on efficiency – it increases the

5As discussed previously, each data point represents the average of 90
separate randomly generated trials.

10

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ef
fic

ie
nc

y

Delta

Impact of Delta on Efficiency

Fig. 2. Efficiency versus Delta. Note that δ = 0 corresponds to the one-shot
game.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ef
fic

ie
nc

y

Delta

Impact of Delta on Efficiency for Various N

N=10
N=50

N=100

Fig. 3. Efficiency versus Delta for N ∈ {10, 50, 100}.

minimum δ at which cheating occurs and increases the rate at
which efficiency approaches zero.

An alternative way to view the impact of the number of
users is to examine the maximum value of delta such that
efficiency falls below a given threshold. We define this critical
point to be the “breaking point.” Figure 4 plots the breaking
point as a function of delta with a threshold of 15%. For
example the graph contains the point (0.94, 100). This means
that with δ = 0.94 the maximum number of nodes in a network
such that the efficiency is at least 15% is 100. As would be
expected, the curve is very steep as δ → 1.0.

B. Robustness of Tree Formation Protocols

The first two core results beg the question “How does the
shape of tree impact its robustness given impatient users?”
Of course different tree formation algorithms and protocols
can form trees with vastly different structure. Thus, instead of
heavyweight mechanisms (e.g., payment schemes or monitor-
ing) an alternative approach to building more robust trees is
to alter the protocol or algorithm appropriately.

1) NICE vs Naive Minimum Cost Spanning Tree: To begin
our analysis, we compare NICE to a centralized algorithm
which creates the minimum cost spanning tree. As in [19],
this centralized algorithm may be run at the source and with
faithful nodes, will minimize the cost metric, network load.
Since selfish agents can perturb the tree, we instead call this
algorithm Naive Min-Cost Spanning Tree (NMC).

There are however several ways in which a node can cheat
this centralized algorithm, depending on the particulars of the

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

N

Delta

Breaking Point (Threshold = 15%)

Fig. 4. Breaking Point as a Function of δ. The breaking point is the minimum
value of N such that efficiency falls below 15%

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0.9 0.92 0.94 0.96 0.98 1

Lo
ad

Delta

NMC vs NICE

NICE
NMC

Fig. 5. Performance of Naive Min-Cost vs NICE. While the NMC is superior
for faithful users, with even modest discounting NICE performs better.

algorithm. If the nodes simply report their distances, as in [19],
then a cheating node can deflate its distance to the root and
inflate its distances to its neighbors [17]. Alternatively, if the
algorithm limits the number of children assigned to a node,
the basic NAT-based Sybil attack will enable the node to have
no children. Further, if the algorithm attempts to minimize
or otherwise bound the depth of the tree (to reduce stretch
or to preserve quality), the NAT attack will enable a node to
connect directly to the root. For the purposes of this analysis,
we assume that one or more of these techniques will permit
the action space that we simulate for NICE – a node can drop
any children and/or connect to the root if desired.

Not surprisingly, for δ = 1.0, NMC outperforms NICE, as
can be seen in Figure 5. The fact that NICE performs worse
is based on the fact that NICE makes myopic decisions based
on only local information. However, note that as in [2], NICE
still performs relatively well.

However, we see that NICE is far more robust, and thus far
more efficient, when faced with selfish users. Figure 5 plots
the load on the network for both NMC and NICE relative to
the load of the minimum cost tree, varying delta.6 While the
NMC algorithm outperforms NICE for δ = 1.0, its efficiency
rapidly decreases. NICE is therefore able to perform better for
a wide range of δ.

Careful inspection of the tree structure lends insight into
why NICE is robust but NMC is fragile to selfishly minded
users. With the NICE trees, a cluster leader at depth k is by

6Because we are comparing two different topologies, we plot load on the
y-axis.

11

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 4 5 6 7 8 9 10

C
o

u
n

t

Utility

(a) Distribution of Utility for
the Naive Min-Cost Algorithm
(µ = 7.46, σ = 0.61)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 3 4 5 6 7 8 9 10

C
o

u
n

t
Utility

(b) Distribution of Utility for
the NICE Algorithm (µ = 8.37,
σ = 0.54)

Fig. 6. Utility Distribution for NMC and NICE at δ = 1.0. NICE induces
homogeneity across positions in the tree.

 1.7

 1.75

 1.8

 1.85

 1.9

 1.95

 2

 2 4 6 8 10 12 14

Lo
ad

Cluster Size (k)

Impact of Cluster Size on Load

Fig. 7. Load of NICE versus Cluster Size (k) at δ = 1.0 (normalized to the
load of NMC at δ = 1.0.)

definition a cluster leader at all depths k′ > k. As such, the
benefits to being higher in the tree are mitigated by supporting
more children. In contrast, the minimum cost tree has no such
guaranteed structure. While of course it is possible by sheer
luck to have a robust topology, this is unlikely. We can further
appreciate this relationship by looking at the distribution of
utilities in the faithful trees. Figure 6 the per node utilities
(bucketed to the integer value) of the node at tree-creation
time. Here we see that the disparity in user utilities is greater
for the NICE algorithm (µ = 8.37, σ = 0.54) than for the Naive
Min-Cost Algorithm (µ = 7.46, σ = 0.61).

2) Applying the Lessons to NICE: This intuition can be
used to increase the robustness of NICE itself. A structured
tree where nodes near the top are asked to bear an appropriate
fraction of the burden is more robust against user incentives.
This suggests that just as we gained robustness moving from
NMC to NICE, we can, in some cases, also gain by increasing
the cluster size.

Recall from Section II that the cluster size of the NICE
algorithm defines the tree structure and the efficiency of the
tree when users are faithful. Figure 7 depicts this relationship.
In general, we find that low k, 2 or 3, minimizes load. (While
[2] and [17] do not present an analysis of load, they do use

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0.88 0.9 0.92 0.94 0.96 0.98 1

Lo
ad

Delta

Impact of Cluster Size on Load

k=2
k=8

k=32
NMC

Fig. 8. Load of NICE k ∈ {2, 8, 32} and NMC versus δ (normalized to the
load of NMC at δ = 1.0.)

k = 3.) Obviously for k > N , we essentially have a unicast
tree with the source sending the stream to one node who then
sends it to everyone else. For N > k > 3 efficiency degrades.

However, Figure 8 shows how load scales as we decrease
delta for various k and the NMC algorithm. A load of 1.0
represents the load of NMC at δ = 1.0. The topologies with
larger k degrade less perform worse for faithful users but
degrade significantly less as δ → 0. This suggests that over a
range of δ values, while increasing k may decrease efficiency
for faithful users, it can be used to increase the robustness –
and thus the realized efficiency – of the system.

VIII. INSENSITIVITY OF RESULTS

While the previous section examines a single model, the
core results and intuition presented apply to a much larger
space of assumptions. In particular, for simulation, we had to
assume specific forms for the utility function and the response
function. In this section, we investigate to what extent our
results are artifices of our specific assumptions, and to what
extent they capture general characteristics of the system itself.
To do this, we study the impact of changing the parameters
of the utility function and the shape of the response function,
and also of adding noise to the response that users receive
about the performance of the system. For each change, we
find that the key qualitative results are unchanged, although
the quantitative results do change.

A. Changing the Utility Functions

Recall that the utility function used in the paper thus far is:

u(d, c) = γ − λ
√

d − βc

with (γ, λ, β) = (10, 1.0, 0.25). This function captures our
assumptions regarding the importance and direction of depth
and number of children on the user’s experience. However, the
intuition and conclusions presented extend to a large class of
utility functions that correspond to our assumptions.

Figure 9 plots efficiency versus delta for a variety of param-
eter settings for the utility function. (Each utility function is
represented in the legend by a (γ λ β) tuple.) As the parameter
values increase, the rate at which efficiency diminishes also

12

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ef
fic

ie
nc

y

Delta

Efficiency vs Delta for Different Utility Functions (Gamma, Lambda, Beta)

(10,1.0,0.25)
(10, 0, 0.25)

(10, 1.0, 0.25)
(10, 1.0, 0.75)

(10, 1.0, 1.0)
(10, 1.0, 0)

Fig. 9. The relationship between efficiency and delta for N=100. Each line
is represented by a (γ λ β) tuple.

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

Lo
ad

Delta

Impact of Cluster Size on Load (10, 1.0, 0.0)

k=2
k=8

k=32

Fig. 10. Sensitivity of k with Alternative Utility Function

increases. This is as expected as higher parameters correspond
to a greater incentive to cheat, and vice versa.

We also examined the impact of the utility function on the
relationship between k and efficiency, over the same range of
utility functions. In all cases, we found that at δ = 1.0 the
smaller values of k perform better. However, as δ increases,
this performance difference can significantly diminish, and in
some cases become inverted. Due to space constraints, we
only include the graph for the parameter values (10, 1, 0)
in Figure 10. (Note that the scales have been adjusted as
appropriate to provide a clearer view of the data.) In this case,
as with our original utility function, k = 8 is the most efficient
value over a large range of δ.

We also consider the extreme end of the parameter spectrum
with β = 0.5 and β = 0.75. For perspective, moving from a
depth of d = 2 to d = 1 increases utility by

√
2−√

1 ≈ 0.41
and from d = 3 to d = 2 is

√
3 − √

2 ≈ 0.32. Therefore,
β = 0.5 implies that dropping a child is always more important
than moving up the tree and that for β = 0.75 it’s more than
twice as important to drop a child than to move from depth
3 to depth 2. Since it hard to support children in this space,
it is not surprising that k = 8 and k = 32 perform relatively
poorly. However, even here, we found that the gap between
k = 2 and the other settings diminishes quickly and that for
a range of δ, k = 32 outperforms k = 2.

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 0.4 0.5 0.6 0.7 0.8 0.9 1

Ef
fic

ie
nc

y

Delta

Impact of Reaction Curve on Efficiency (N = 100)

y=x
w=10
w=25
w=50

Fig. 11. The Impact of Different Response Functions on Efficiency and
Robustness

B. Alternative Response Functions

The analysis above uses a linear reaction curve. This embod-
ies the assumption that all load is equally harmful and noticed.
In some circumstances, a threshold-like behavior might be
more appropriate: As the load increases, there is initially no
effect on the expected lifetime of the system, but if the load
crosses a critical value, the expected lifetime drops sharply. In
this section, we use a parametrized sigmoid function to explore
the range between linear and threshold functions:

r(x) = 1 − 1
1 + exp(ω(x − .5))

The ω parameter serves to modulate the slope of the
function; for higher ω, the response is more non-linear and
threshold-like.

Figure 11 plots efficiency versus delta. Here we see two
effects of the sigmoid. The flat, initial, region of the re-
sponse function causes an increased amount of initial cheating.
However, the sharp drop in the probability helps to induce
cooperation and faithfulness. As ω increases, both of these
factors become more prominent.

C. Information and Noise

The simulator embodies two key assumptions about infor-
mation. First, we assume the nodes have perfect information
about the current level of efficiency in the network. Second,
we assume that the nodes perfectly understand the reaction
curve. It is more reasonable to assume that in practice, the
nodes will have a noisy signal of both.

To implement such noise in the simulator, we introduce a
noise term, ε ∈ [0, 1]. Instead of assuming that the load signal,
� is correct, the agent treats the signal as noisy and instead
assumes that the true load, l̂ ∈ U(�−ε∆, �+ε∆) where U(.) is
the uniform distribution and ∆ = L(U)−L(F), the improve-
ment over unicast provided by faithful users. Therefore, when
evaluating the current and/or potential scenarios, the agent will
take the expected value over this range.7 While other noise

7There are two important implementation notes. First, the expected value
is calculating by evaluating the given function at a discrete number of points
in the range and averaging. Second, only points in the range [L(Faithful),
L(UNI)] are considered. For points outside that range, the nearest end-point
of the range is used.

13

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

L
o

a
d

Delta

Impact of k on Delta vs Load (Noise = 0.5)

k=2
k=8

k=32

Fig. 12. Impact of k with Noise

models could be used, this model captures uncertainty both
in the current position and in the exact nature of the reaction
curve with a single parameter. We consider the impact of k as
a function of noise and see that the fundamental relationships
still hold; we depict the results for ε = 0.5 in Figure 12.

In this model, the impact of noise varies on the reaction
function, but does not qualitatively change the qualitative
results of the model. We saw that with the linear response
function, increased noise causes users to be more cautious
– and thus more faithful. By contrast, the increased noise
diminishes the impact of the sigmoid. This is expected, as
the addition of noise has the effect of smoothing out the sharp
drop in the sigmoid.

IX. CONCLUSIONS

Application overlay multicast has the potential to be a
lightweight alternative to IP multicast. In order to design
robust overlays we need to take into account the users’
incentives. In this paper, we have described an approach to
analyzing user incentives using repeated games. The critical
feature of our model is that it captures the endogenous, system-
induced, motivation for users to cooperate. This allowed us
to identify system features and protocol parameters that can
increase the robustness to selfish users. We analyzed the NICE
protocol, and found that its layered branching structure helps
to make the protocol more robust to selfish users; further, under
reasonable assumptions, the cluster-size parameter can be used
to make the protocol even more robust.

One important direction for future work is to conduct further
empirical validation and calibration of the predictions made
by this model. This would be very useful to measure to
what extent real user cooperation is system-dependent, and
then build a composite model that includes both altruism and
repeated-game effects.

ACKNOWLEDGMENTS

We would like to thank Robert Beverly, Steve Bauer, Dave
Clark, Dina Katabi, Drew Fudenberg, and John Wroclawski
for their valuable comments and suggestions.

REFERENCES

[1] AFERGAN, M. Applying the Repeated Game Framework to Multiparty
Networked Applications. PhD thesis, MIT, August 2005.

[2] BANERJEE, S., BHATTACHARJEE, B., AND KOMMAREDDY, C. Scal-
able Application Layer Multicast. In ACM SIGCOMM 2002.

[3] BEVERLY, R. Reorganization in Network Regions for Optimality and
Fairness. Master’s thesis, MIT, August 2004.

[4] CHRISTIN, N., GROSSKLAGS, J., AND CHUANG, J. Near Rationality
and Competitive Equilibria in Networked Systems. In PINS ’04:
Proceedings of the ACM SIGCOMM Workshop on Practice and Theory
of Incentives in Networked Systems (New York, NY, USA, 2004), ACM
Press, pp. 213–219.

[5] CHU, Y.-H., GANJAM, A., NG, T. S. E., RAO, S. G., SRIPANID-
KULCHAI, K., ZHAN, J., AND ZHANG, H. Early Experience with an
Internet Broadcast System Based on Overlay Multicast. In USENIX
Annual Technical Conference, General Track (2004), pp. 155–170.

[6] COX, L. P., AND NOBLE, B. D. Samsara: Honor Among Thieves in
Peer-to-Peer Storage. In Proceedings of the Nineteenth ACM Symposium
on Operating Systems Principles (Bolton Landing, NY, USA, October
2003), pp. 120–132.

[7] FELDMAN, M., LAI, K., STOICA, I., AND CHUANG, J. Robust
Incentive Techniques for Peer-to-Peer Networks. In EC ’04: Proceedings
of the 5th ACM Conference on Electronic Commerce (2004), ACM Press,
pp. 102–111.

[8] FELDMAN, M., PAPADIMITRIOU, C., CHUANG, J., AND STOICA, I.
Free-riding and Whitewashing in Peer-to-Peer Systems. In PINS ’04:
Proceedings of the ACM SIGCOMM Workshop on Practice and Theory
of Incentives in Networked Systems (2004), ACM Press, pp. 228–236.

[9] FUDENBERG, D., AND TIROLE, J. Game Theory. MIT Press, 1991.
[10] HUA CHU, Y., CHUANG, J., AND ZHANG, H. A Case for Taxation

in Peer-to-Peer Streaming Broadcast. In PINS ’04: Proceedings of the
ACM SIGCOMM Workshop on Practice and Theory of Incentives in
Networked Systems (New York, NY, USA, 2004), ACM Press, pp. 205–
212.

[11] HUA CHU, Y., AND ZHANG, H. Considering Altruism in Peer-to-Peer
Internet Streaming Broadcast. In NOSSDAV ’04: Proceedings of the 14th
International Workshop on Network and Operating Systems Support for
Digital Audio and Video (New York, NY, USA, 2004), ACM Press,
pp. 10–15.

[12] HUANG, E., CROWCROFT, J., AND WASSELL, I. Rethinking Incentives
for Mobile Ad Hoc Networks. In PINS ’04: Proceedings of the
ACM SIGCOMM Workshop on Practice and Theory of Incentives in
Networked Systems (New York, NY, USA, 2004), ACM Press, pp. 191–
196.

[13] KAMVAR, S. D., SCHLOSSER, M. T., AND GARCIA-MOLINA, H. The
Eigentrust Algorithm for Reputation Management in P2P Networks. In
WWW ’03: Proceedings of the 12th International Conference on World
Wide Web (New York, NY, USA, 2003), ACM Press, pp. 640–651.

[14] LEE, S., SHERWOOD, R., AND BHATTACHARJEE, S. Cooperative Peer
Groups in NICE. In Proceedings of INFOCOM 2003 (2003).

[15] LimeWire User Guide. http://www.limewire.com/english/
content/ug options.shtml.

[16] MAS-COLELL, A., WHINSTON, M. D., AND GREEN, J. R. Microeco-
nomic Theory. Oxford University Press, New York, 1995.

[17] MATHY, L., BLUNDELL, N., ROCA, V., AND EL-SAYED, A. Impact
of Simple Cheating in Application-Level Multicast. In Proceedings of
IEEE Infocom (2004).

[18] MEDINA, A., LAKHINA, A., MATTA, I., AND BYERS, J. BRITE:
Universal Topology Generation from a User’s Perspective. Tech. Rep.
2001-003, 1 2001.

[19] ROCA, V., AND EL-SAYED, A. A Host-Based Multicast (HBM)
Solution for Group Communications. In ICN ’01: Proceedings of the
First International Conference on Networking-Part 1 (London, UK,
2001), Springer-Verlag, pp. 610–619.

[20] SELWYN YUEN, B. L. Market-driven Bandwidth Allocation in Selfish
Overlay Networks. In Proceedings of INFOCOM 2005 (2005).

14

